Assignment 4.

1. Solve the equation $\sin(x - 30^\circ) = 3\cos(x - 60^\circ)$ for $-180^\circ \le x \le 180^\circ$.

2. (a) Prove the identity
$$\cos\left(x + \frac{1}{6}\pi\right) + \sin\left(x + \frac{1}{3}\pi\right) \equiv \sqrt{3}\cos x.$$
 [3]

(b) Hence solve the equation $\cos\left(x + \frac{1}{6}\pi\right) + \sin\left(x + \frac{1}{3}\pi\right) = 1$ for $0 < x < 2\pi$. [3]

3. Solve the equation $\sec x = 4 - 2\tan^2 x$, giving all solutions in the interval $0^\circ \le x \le 360^\circ$.

4. (a) Express $12\cos\theta - 5\sin\theta$ in the form $R\cos(\theta + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, giving the exact value of R and the value of α correct to 2 decimal places. [3]

(b) Hence solve the equation $12\cos\theta - 5\sin\theta = 10$, giving all solutions in the interval $0^{\circ} \le \theta \le 360^{\circ}$. [4]

[6]

5. (a) Prove the identity $\tan\left(x + \frac{1}{4}\pi\right) + \tan\left(x - \frac{1}{4}\pi\right) \equiv 2\tan 2x$.

(b) Hence solve the equation $\tan\left(x+\frac{1}{4}\pi\right)+\tan\left(x-\frac{1}{4}\pi\right)=2$, for $0 \le x \le \pi$.

Total mark of this assignment: 31.

- (†) Bonus questions:
 - 1. Show that $\tan 3\theta = \frac{3 \tan \theta \tan^3 \theta}{1 3 \tan^2 \theta}$. Given that $\theta = \cos^{-1} \left(\frac{2}{\sqrt{5}}\right)$ and that θ is acute, show that $\tan 3\theta = \frac{11}{2}$. Hence find all solutions of the equations.
 - (a) $\tan \left(3 \cos^{-1} x\right) = \frac{11}{2}$, (b) $\cos \left(\frac{1}{3} \tan^{-1} y\right) = \frac{2}{\sqrt{5}}$.

2. The sides of a triangle have lengths x - y, x and x + y, where x > y > 0. The largest and smallest angles of the triangle are α and β , respectively. Show that

$$4(1 - \cos \alpha)(1 - \cos \beta) = \cos \alpha + \cos \beta.$$

In the case $\alpha = 2\beta$, show that $\cos \beta = \frac{3}{4}$ and hence find the ratio of the lengths of the sides of the triangle.

[3]