Assignment 4.

1. Solve the equation $\sin \left(x-30^{\circ}\right)=3 \cos \left(x-60^{\circ}\right)$ for $-180^{\circ} \leq x \leq 180^{\circ}$.
2. (a) Prove the identity $\cos \left(x+\frac{1}{6} \pi\right)+\sin \left(x+\frac{1}{3} \pi\right) \equiv \sqrt{3} \cos x$.
(b) Hence solve the equation $\cos \left(x+\frac{1}{6} \pi\right)+\sin \left(x+\frac{1}{3} \pi\right)=1$ for $0<x<2 \pi$.
3. Solve the equation $\sec x=4-2 \tan ^{2} x$, giving all solutions in the interval $0^{\circ} \leq x \leq 360^{\circ}$.
4. (a) Express $12 \cos \theta-5 \sin \theta$ in the form $R \cos (\theta+\alpha)$, where $R>0$ and $0^{\circ}<\alpha<90^{\circ}$, giving the exact value of R and the value of α correct to 2 decimal places.
(b) Hence solve the equation $12 \cos \theta-5 \sin \theta=10$, giving all solutions in the interval $0^{\circ} \leq \theta \leq 360^{\circ}$.
5. (a) Prove the identity $\tan \left(x+\frac{1}{4} \pi\right)+\tan \left(x-\frac{1}{4} \pi\right) \equiv 2 \tan 2 x$.
(b) Hence solve the equation $\tan \left(x+\frac{1}{4} \pi\right)+\tan \left(x-\frac{1}{4} \pi\right)=2$, for $0 \leq x \leq \pi$.

Total mark of this assignment: 31.
(\dagger) Bonus questions:

1. Show that $\tan 3 \theta=\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}$.

Given that $\theta=\cos ^{-1}\left(\frac{2}{\sqrt{5}}\right)$ and that θ is acute, show that $\tan 3 \theta=\frac{11}{2}$.
Hence find all solutions of the equations.
(a) $\tan \left(3 \cos ^{-1} x\right)=\frac{11}{2}$,
(b) $\cos \left(\frac{1}{3} \tan ^{-1} y\right)=\frac{2}{\sqrt{5}}$.
2. The sides of a triangle have lengths $x-y, x$ and $x+y$, where $x>y>0$. The largest and smallest angles of the triangle are α and β, respectively. Show that

$$
4(1-\cos \alpha)(1-\cos \beta)=\cos \alpha+\cos \beta
$$

In the case $\alpha=2 \beta$, show that $\cos \beta=\frac{3}{4}$ and hence find the ratio of the lengths of the sides of the triangle.

